Announcements

Midterm Exam Two is scheduled on April 6 in class.

On March 25 I will help you prepare Midterm Exam Two.

• On March 9 I will teach "Introduction to Pipelining".

Logic and Computer Design Fundamentals PowerPoint[®] Slides © 2004 Pearson Education, Inc.

Chapter 5 1

Chapter 3: Part 3 Arithmetic Functions

- Iterative combinational circuits
- Binary adders
 - Half and full adders
 - Ripple carry and carry lookahead adders
- Binary subtraction
- Binary adder-subtractors
 - Signed binary numbers
 - Signed binary addition and subtraction
 - Overflow

Binary multiplication

Iterative Combinational Circuits

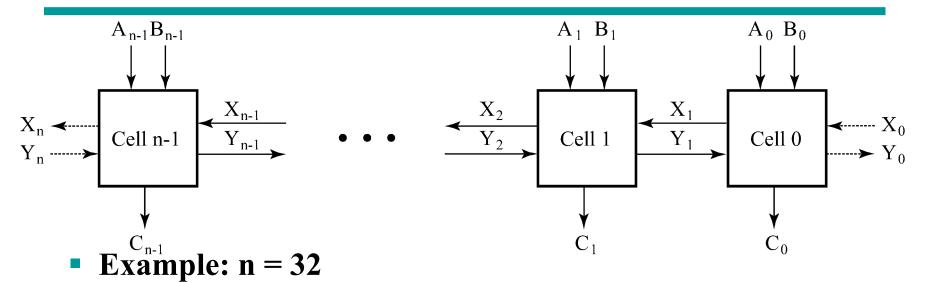
Arithmetic functions

- Operate on binary vectors
- Use the same subfunction in each bit position
- Can design functional block for subfunction and repeat to obtain functional block for overall function

Cell - subfunction block

Iterative array - a array of interconnected cells

Block Diagram of a 1D Iterative Array



- Number of inputs = ?
- Truth table rows = ?
- Equations with up to ? input variables
- Equations with huge number of terms
- Design impractical!
- Iterative array takes advantage of the regularity to make design feasible

Logic and Computer Design Fundamentals PowerPoint® Slides © 2004 Pearson Education, Inc.

Functional Blocks: Addition

- Binary addition used frequently
- Addition Development:
 - *Half-Adder* (HA), a 2-input bit-wise addition functional block,
 - *Full-Adder* (FA), a 3-input bit-wise addition functional block,
 - *Ripple Carry Adder*, an iterative array to perform <u>binary addition</u>, and
 - *Carry-Look-Ahead Adder* (CLA), a hierarchical structure to improve performance.

Functional Block: Half-Adder

• A 2-input, 1-bit width binary adder that performs the following computations:

X	0	0	1	1
+ Y	+ 0	+1	+ 0	+ 1
C S	0 0	01	01	10

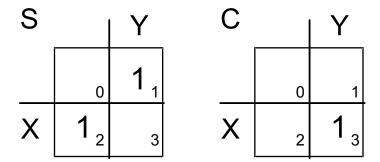
- A half adder adds two bits to produce a two-bit sum
- The sum is expressed as a <u>sum bit</u>, S and a <u>carry bit</u>, C
- The half adder can be specified as a truth table for S and C ⇒

X	Y	С	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Logic Simplification: Half-Adder

- The K-Map for S, C is:
- This is a pretty trivial map! By inspection:

$$S = X \cdot \overline{Y} + \overline{X} \cdot Y = X \oplus Y$$
$$S = (X + Y) \cdot \overline{(X + Y)}$$



and

$$\mathbf{C} = \mathbf{X} \cdot \mathbf{Y}$$

$$\mathbf{C} = \overline{\left(\overline{(\mathbf{X} \cdot \mathbf{Y})}\right)}$$

These equations lead to several implementations.

Five Implementations: Half-Adder

- We can derive following sets of equations for a halfadder:
 - (a) $S = X \cdot \overline{Y} + \overline{X} \cdot Y$ $C = X \cdot Y$ (b) $S = (X + Y) \cdot (\overline{X} + \overline{Y})$ $C = X \cdot Y$ (c) $S = (C + \overline{X} \cdot \overline{Y})$ $C = X \cdot Y$ (d) $S = (X + Y) \cdot \overline{C}$ $\overline{C} = (X + Y) \cdot \overline{C}$ (e) $S = X \oplus Y$ $C = X \cdot Y$ (f) $S = (C + \overline{X} \cdot \overline{Y})$ $C = X \cdot Y$
- (a), (b), and (e) are SOP, POS, and XOR implementations for S.
- In (c), the C function is used as a term in the AND-NOR implementation of S, and in (d), the C function is used in a POS term for S.

Logic and Computer Design Fundamentals PowerPoint® Slides © 2004 Pearson Education, Inc.

Implementations: Half-Adder

 The most common half adder implementation is:

$$\mathbf{S} = \mathbf{X} \oplus \mathbf{Y}$$
$$\mathbf{C} = \mathbf{X} \cdot \mathbf{Y}$$

$$X \longrightarrow S (e)$$

• A NAND only implementation is: $S = (X + Y) \cdot C$ $C = ((X \cdot Y))$ $X \rightarrow C$ $V \rightarrow C$ $V \rightarrow$

Functional Block: Full-Adder

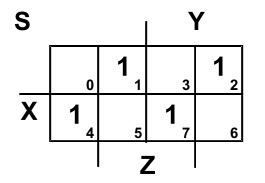
 A full adder is similar to a half adder, but includes a carry-in bit from lower stages. Like the half-adder, it computes a sum bit, S and a carry bit, C.

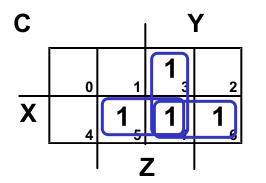
 For a carry-in (Z) of 	Z	0	0	0	0
0, it is the same as	X	0	0	1	1
the half-adder:	+ Y	+ 0	+1	+ 0	+1
	C S	00	01	01	10
 For a carry- in 					
(Z) of 1:	Z	1	1	1	1
	X	0	0	1	1
	+ Y	+0	+1	+ 0	+1
	C S	01	10	10	11
onic and Computer Dealon Fondamentale					

Logic and Computer Design Fundamentals PowerPoint[®] Slides © 2004 Peerson Education, Inc.

Logic Optimization: Full-Adder

Full-Adder Truth Table:	X	Y	Z	С	S
	0	0	0	0	0
	0	0	1	0	1
	0	1	0	0	1
	0	1	1	1	0
	1	0	0	0	1
	1	0	1	1	0
Full-Adder K-Map:	1	1	0	1	0
-	1	1	1	1	1





Logic and Computer Design Fundamentals PowerPoint[®] Slides © 2004 Pearson Education, Inc.

Equations: Full-Adder

- From the K-Map, we get:
 - $S = X \overline{Y} \overline{Z} + \overline{X} Y \overline{Z} + \overline{X} \overline{Y} \overline{Z} + X Y Z$ C = X Y + X Z + Y Z
- The S function is the three-bit XOR function (Odd Function):

 $\mathbf{S} = \mathbf{X} \oplus \mathbf{Y} \oplus \mathbf{Z}$

The Carry bit C is 1 if both X and Y are 1 or if the sum is 1 and a carry-in (Z) occurs. Thus C can be rewritten as:

 $\mathbf{C} = \mathbf{X} \mathbf{Y} + (\mathbf{X} \oplus \mathbf{Y}) \mathbf{Z}$

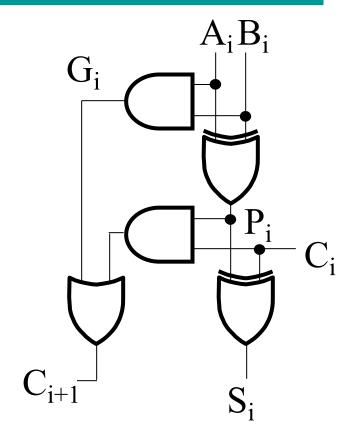
- The term X·Y is *carry generate*.
- The term X⊕Y is *carry propagate*. (why?)

Implementation: Full Adder

- Full Adder Schematic
- Here X, Y, and Z, and C (from the previous pages) are A, B, C_i and C_{i+1}, respectively. Also,

G = generate and

- **P** = propagate.
- Note: This is really a combination of a 3-bit odd function (for S)) and Carry logic (for C_{i+1}):

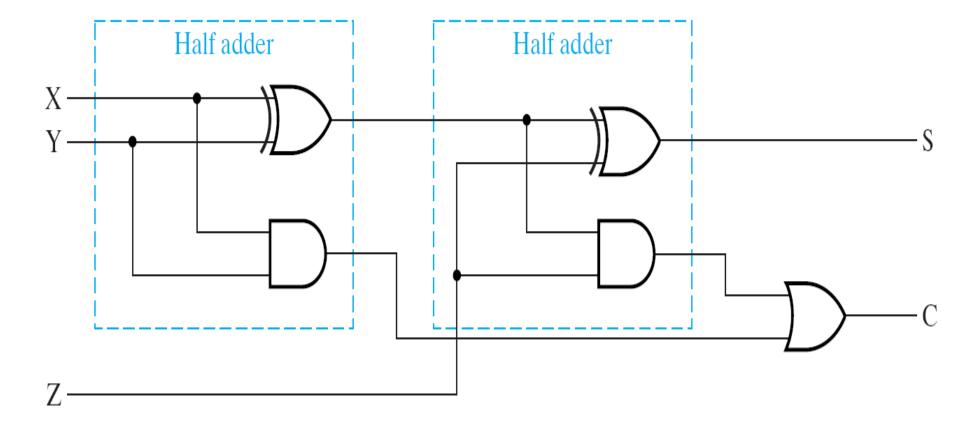


(G = Generate) OR (P = Propagate AND C_i = Carry In)

$$\mathbf{C}_{i+1} = \mathbf{G} + \mathbf{P}_i \cdot \mathbf{C}_i$$

Logic and Computer Dealgn Fundamentals PowerPoint[®] Slides © 2004 Pearson Education, Inc.

Logic Diagram of Full Adder



Logic and Computer Design Fundamentals PowerPoint[®] Slides © 2004 Pearson Education, Inc.

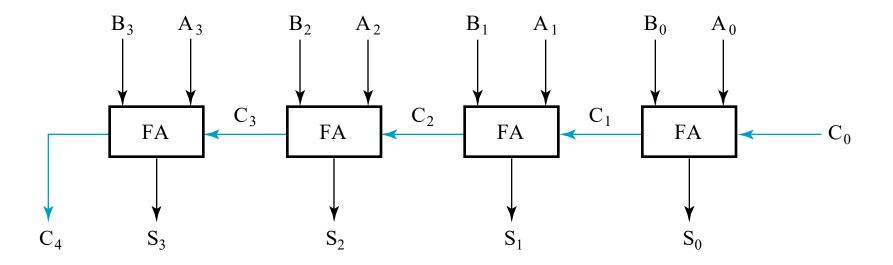
Binary Adders

- To add multiple operands, we "bundle" logical signals together into vectors and use functional blocks that operate on the vectors
- Example: <u>4-bit ripple carry</u> <u>adder:</u> Adds input vectors
 A(3:0) and B(3:0) to get a sum vector S(3:0)
- Note: carry out of cell i becomes carry in of cell i + 1

Description	Subscript 3 2 1 0	Name
Carry In	0110	C _i
Augend	1011	A _i
Addend	0011	B _i
Sum	1110	S _i
Carry out	0011	C _{i+1}

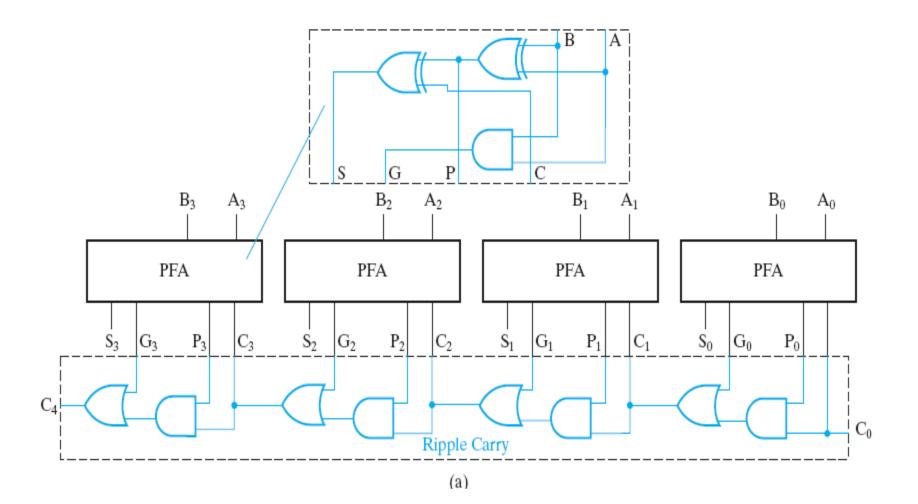
4-bit Ripple-Carry Binary Adder

 A four-bit Ripple Carry Adder made from four 1-bit Full Adders:



Logic and Computer Design Fundamentals PowerPoint[®] Slides © 2004 Pearson Education, Inc.

Ripple Carry

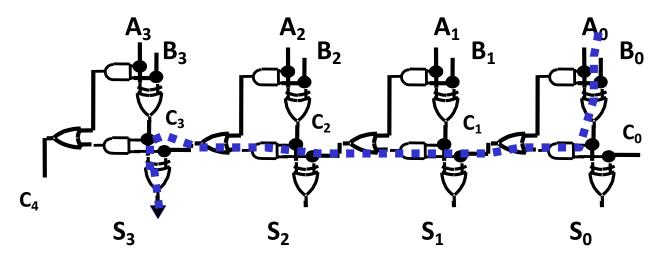


Logic and Computer Design Fundamentals PowerPoint[®] Slides © 2004 Pearson Education, Inc.

Chapter 5 17

Carry Propagation & Delay

- One problem with the addition of binary numbers is the length of time to propagate the ripple carry from the least significant bit to the most significant bit.
- The gate-level propagation path for a 4-bit ripple carry adder of the last example:

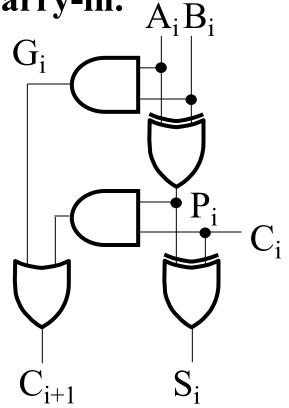


Note: The "long path" is from A₀ or B₀ though the circuit to S₃.

Logic and Computer Design Fundamentals PowerPoint® Slides © 2004 Pearson Education, Inc.

Carry Lookahead

- Given Stage i from a Full Adder, we know that there will be a <u>carry generated</u> when A_i = B_i = "1", whether or not there is a carry-in. A.B.
- Alternately, there will be a <u>carry propagated</u> if the "half-sum" is "1" and a carry-in, C_i occurs.
- These two signal conditions are called *generate*, denoted as G_i, and *propagate*, denoted as P_i respectively and are identified in the circuit:



Carry Lookahead (continued)

- In the ripple carry adder:
 - Gi, Pi, and Si are <u>local</u> to each cell of the adder
 - Ci is also local each cell
- In the carry lookahead adder, in order to reduce the length of the carry chain, Ci is changed to a more global function spanning multiple cells
- Defining the equations for the Full Adder in term of the P_i and G_i:
 - $P_i = A_i \bigoplus B_i \qquad G_i = A_i B_i$ $S_i = P_i \bigoplus C_i \qquad C_{i+1} = G_i + P_i C_i$

Carry Lookahead Development

- C_{i+1} can be removed from the cells and used to derive a set of carry equations spanning multiple cells.
- Beginning at the cell 0 with carry in C₀:

$$\begin{split} C_1 &= G_0 + P_0 \ C_0 \\ C_2 &= G_1 + P_1 \ C_1 = \ G_1 + P_1 (G_0 + P_0 \ C_0) \\ &= G_1 + P_1 G_0 + P_1 P_0 \ C_0 \\ C_3 &= G_2 + P_2 \ C_2 = \ G_2 + P_2 (G_1 + P_1 G_0 + P_1 P_0 \ C_0) \\ &= G_2 + P_2 G_1 + P_2 P_1 G_0 + P_2 P_1 P_0 \ C_0 \\ C_4 &= G_3 + P_3 \ C_3 = G_3 + P_3 G_2 + P_3 P_2 G_1 \\ &+ P_3 P_2 P_1 G_0 + P_3 P_2 P_1 P_0 \ C_0 \end{split}$$

Logic and Computer Design Fundamenta PowerPoint[®] Slides © 2004 Pearson Education, Inc.

Carry Lookahead Adder

