Announcements

Please read “Error Detection and Correction”
sent to you by your grader.

Lab Assignment #2 deals with Hamming Code.

Lab Assignment #2 is available now and will be
due by 11:59 PM on March 20.

Homework Assignment #2 is online now and it
will be due in class on March 25.

Error Detection And Correction

 The small size of the transistors, combined

with cosmic ray effects causes occasional
errors in stored information in large, dense
RAM chips.

 These errors can be detected and corrected
by employing error-detecting and —correcting
codes in RAMSs.

Parity Bit

* To detect errors in data communication
and processing, an additional bit is
sometimes added to a binary code word to
define its parity.

* A parity bit is the extra bit included to
make the total number of 1’s in the
resulting code word either even or odd.

Parity Bit Example

With Even Parity With Odd Parity
* 1000001 01000001 11000001
7&& 8&6

* 1010100 11010100 01010100

Characteristics of Parity

* Even parity is more common

* Parity may be used with binary numbers
as well as with codes including ASCII

* The parity bit may be placed in any fixed
position in the code

Parity Bit Generating and Checking

« An even parity bit is generated at the sending end for
all 7-bit ASCII characters

« The 8-bit characters including the parity bits are
transmitted to their destination

* The parity of each character is then checked at the
receiving end

 |If the parity of the received character is not even
(assuming even parity is used), at least one bit has
changed its value during the transmission

Pros & Cons

If the number of bits changed is even, the error
will not be detected.

It can only detects one, three, or any odd
number of errors in each character.

Parity does not indicate which bit contained
the error, even when it can detect it.

The data must be discarded entirely, and re-
transmitted from scratch.

It uses only a single bit, resulting in the least
overhead.

Hamming Codes

The most common types of error-correcting codes
used in RAM are based on the codes devised by R.W.
Hamming.

K parity bits are added to an n-bit data word, forming
a new word of n + k bits.

The bit positions are numbered in sequence from 1 to
n+ k.

Those positions numbered with powers of two are
reserved for the parity bits.

The code can be used with words of any length.

11,7) Hamming Code Example

Py Py dy Py dy dyidypy de deidy

Data word (without parity): 0 1T 1 0 1T 0 1
Py 1 0 1 0 1 1
P, 0 O 1 10 o 1
P; 0 1 1 0
Py 0 1 01

Data word (withparity): 1 0 0 0 1 1 0 0 1 0O 1

Calculation of Hamming code parity bits

7-bit data word "0110101" (d - data bits, p - parity bits)

Hamming Code Example (Cont.)

Py Py d1 Ps (Ig d3 d4 Py d5 d6 (I-, Parity check Parity bit
Received dataword: 1 0 0 0 1T 1 0 0 1 0 0

Py 1 0 1 I 1 0 Fail 1
Py 0 0 10 0 0 Fail 1
Ps 0 1 10 Pass 0
Py 0 1 00 Fail 1

Checking of parity bits (switched bit highlighted)

« Assume the final bit gets corrupted and turned from 1 to 0
* Flag each parity bit as 1 when the even parity check fails

10
PAL is a registered trademark of Lattice Semiconductor Corp.

Hamming Code Example (Cont.)

Py P53 Py Py
Binary 1 0 |1 |1
Decimal 8 2 1 =11

 Evaluate the value of the parity bits.
* The integer value of the parity bits is 11, signifying that the

11th bit in the data word (including parity bits) is wrong and
needs to be flipped.

11

Hamming Code Example (Cont.)

* Flipping the 11th bit gives changes
10001100100 back into 10001100101.

 Removing the Hamming codes gives the
original data word of 0110101.

12

How about parity bit error?

As parity bits do not check each other, if a
single parity bit check fails and all others
succeed, then it is the parity bit in question
that is wrong and not any bit it checks.

13

Hamming codes with additional Earity

* The extra parity bit applies to all bits after
the Hamming code check bits have been
added.

* Then all single-bit, two-bit and three-bit
errors can be detected.

» two-bit errors can be distinguished from
single-bit and three-bit errors.

 Single-bit errors can be corrected.

14

Two-bit errors

Two-bit errors can at least be recognized:

« When using correction, if a parity error is detected and the
Hamming code indicates that there is an error, this error can be
corrected.

« However, if a parity error is not detected but the Hamming code
Indicates that there is an error, this is assumed to have been
due to a two-bit error, which is detected but cannot be corrected.

« Hamming Codes are capable of correcting one error

or detecting two errors but not capable of doing both
simultaneously.

15

Hamming Rule

d+p+1<=2°

Where d is the number of data bits and p is the number
of parity bits

16

Suitable Code

* From the practical standpoint of communications, a
(11,7) code is not a good choice, because it involves
non-standard character lengths.

* Designing a suitable code requires that the ratio of
parity to data bits and the processing time involved to
encode and decode the data stream be minimized.

* A code that efficiently handles 8-bit data items is
desirable.

17

4 Parity Bits

« Can provide error correction for five to eleven
data bits.

* A (12,8) code then offers a reasonable
compromise in the bit stream .

Why (12,8) code is desirable ?

The code enables data link packets to be
constructed easily by permitting one parity byte
to serve two data bytes.

18

Another Example (12,3)

Bitposttion 1 2 3 4 5 6 7 8 9 10 11 12
Pp By 1 P4 1 00 Pg 0 1T 0 0

Assume a 8-bit data word 11000100. We include 4
parity bits with this word and arranged the 12 bits
as above. Please compute each parity bit value:

19

Calculating Parity Bits

P, = XOR of bits (3.5.7.9.11) = 1 ®1@0S080=0
P, = XOR of bits (3,6,7,10,11) = 1®0®0S1®0=0
P, = XOR of bits (5.6,7,12) = 1&0®0®0=1

Pg = XOR of bits (9,10,11,12) = 0® 1®0&0= 1

* We're using Even Parity.

20

The Entire Code

Bitposiion 1 2 3 4 5 6 7 8 9 10 11 12
O 0 1 1 1L 00 10 1 0 0

The 8-bit data word is written into the memory together with
the 4 parity bits as a 12-bit composite word. Substituting the 4
parity bits in their proper positions, we obtain the 12-bit
composite word.

21

Checking

Cy = XOR of bits (1, 3,5,7,9,11)
(>, = XOR of bits (2,3,6,7,10,11)
Cy= XOR of bits (4,5,6,7,12)

Cy = XOR of bits (8, 9. 10, 11, 12)

 When the 12 bits are read from memory, they are
checked again for errors

« The parity of the word is checked over the same groups
of bits, including their parity bits

22

How to locate the error bit?

C=C,C.C.C,

o|/f C=0, there is no error has occurred.

oIf CI=0, the 4-bit binary number
formed by the check bits gives the
position of the erroneous bit if only a
single bit is in error.

23

Three Cases

'.))

Bit position 2

0 No error

0 Errorin bit 1
0 Errorin bit3s

QO O
o o= =N
O O N
OO
O O O

1
0
1
0

Cg C; C, C,

No error 0 0 0 0
Errorinbit1 0 0 0 |
Errorinbits 0 | 0 |

The error can then be corrected by complementing the corresponding bit.
An error can occur in the data or in one of the parity bits.

24

Algorithm for General Hamming

- All bit positions that are powers of two are used as parity bits. (positions 1, 2,
4, 8, 16, 32, 64, etc.)

« All other bit positions are for the data to be encoded. (positions 3, 5, 6, 7, 9, 10,
11,12, 13, 14, 15, 17, etc.)

« Each parity bit calculates the parity for some of the bits in the code word. The
position of the parity bit determines the sequence of bits that it alternately
checks and skips.

— Position 1 (n=1): skip 0 bit (0=n-1), check 1 bit (n), skip 1 bit (n), check 1 bit (n), skip 1
bit (n), etc.

— Position 2 (n=2): skip 1 bit (1=n-1), check 2 bits (n), skip 2 bits (n), check 2 bits (n), skip
2 bits (n), etc.

— Position 4 (n=4): skip 3 bits (3=n-1), check 4 bits (n), skip 4 bits (n), check 4 bits (n),
skip 4 bits (n), etc.

— Position 8 %n=8): skip 7 bits (7=n-1), check 8 bits (n), skip 8 bits (n), check 8 bits (n),
skip 8 bits (n), etc.

— Position 16 (n=16): skip 15 bits (15=n-1), check 16 bits (n), skip 16 bits (n), check 16
bits (n), skip 16 bits (n), etc.

— Position 32 (n=32): skip 31 bits (31=n-1), check 32 bits (n), skip 32 bits (n), check 32
bits (n), skip 32 bits (n), etc.

— General rule for position n: skip n-1 bits, check n bits, skip n bits, check n bits...

— And so on.

25

Algorithm (Cont.)

« The parity bit at position 2 checks
bits in positions having bit k set In
their binary representation.

 For instance, bit 13, I.e. 1101(2), IS
checked by bits 1000, = 8, 0100,,=4
and 0001, = 1.

26

Additional Parity Bit

» By adding another parity bit to the coded
word, the Hamming code can be used to
correct a single error and detect double

errors.

* Appending P,; to the previous 12-bit
coded word becomes 001110010100P 5,
where P,; is evaluated from the XOR of
the other 12 bits.

27

Additional Parity Bit (Cont.)

* This produces 0011100101001 (even
parity)

[fC=0andP=0 Noerror occurred.
[fC#0andP=1 Asingle error occurred that can be corrected.

fCz0andP=0 A double error occurred that is detected but cannot
be corrected.

[fC=0andP=1 Anerror occurred in the Py bit.

Note that this scheme will detect more than two erroneous bits in
many cases, but is not guaranteed to detect all such errors.

28

Lab Assignment#2

Goal:

The purpose of this project is to
demonstrate the use of Boolean logic and
build basic circuits. Note that this lab
assignment is group assignment with each
group having no more than 2 students.

29

Lab Assignment?

Hex Memory I/0O Controller
Displays

|

Transmission Vectored Bit: A 4-Bit Parity Vector (P1-P4) are interlaced with the 8-bit
Data Vector (D1:D8):

P1 P2 D1P3D2D3 D4 P4 D5 D6 D7 D8

1) Create an ECC Generator, at the I/O Controller from the 8-bit Data Vector. The output
of the ECC Generator will be the 4-Bit Parity Vector.

2) Construct a 12-bit Data Transmission bus to send the binary data and parity bits over
to Memory.

3) Construct an ECC Detector at Main Memory that corrects for single bit errors. We will
use 3 Hex displays, 2 for data and 1 for an error status, for diagnostic purposes:

. In the event that no error has occurred, your design must display the data transferred
using the 2 Hex data displays and a “0” as an error status.

. For single bit transmission errors, your system must correct the error and display the
data along with “C” in the 3rd Hex Display.

. For multiple bit transmission errors, your design must display “E” in the error status
display. Note that only groups with 2 or 3 members are required to complete this part.

30

ECC Generator

P3
P2
P1
PO
Da?
Dab
Das
Da4
Da3
Daz2
Da1

l_
0 _
N Al I
e —— 0
l_
é:/——ﬂ— ol)
1l- 1—
0 0 0— |
(1 Rt
l_

0 0

0y -
1 E% OOOOOOOOOOOO ﬂ:% 1
1 teri 1
) Rl Data Transmission L)
0 PO TPO 0
1 D7 T7 1
1 DB TG 1
1 D5 T5 1
0 D4 T4 0
1 D3 T3 1
0 D2 T2 0
1 D1 T1 1
1 Do TO 1

Dal

ECCDetector
P3 A
P2 B
P1 C
PO D
D7 FD7
D6 FDB
D5 FD5
D4 FD4
D3 FD3
D2 FD2
D1 FD1
DO FDO

> (=] ||° [m]

This circuit performs all of the functionality required for taking input data hits, calculating

their parity, transmitting this 12 hits of data interlaced with parity through a mock transmission
line inwhich the user can introduce 1 bit of errar into the system. This new 12 hit data is then
received by an ECC Detector whose taskis multifold. It first calculates C1, C2, C3, C4.i.e. determing
the location of the 1 hit error, if such an error has occurred. Then, this indexis used by a 4to 16 line
decoder to identify and correctthe appropriate hit. Lastly, the detector's outputis the original data, thus
ensuring that the data's integrity has been maintained. This system is ahle to correct for 1 hit errors.

31

iEd 9
1l—
0" '
11—
0]
17 0
. L e
During the data transmissions,
there is a possibility that one or 1 :/ 0
more hits can change its state 0
from'0'to "1'or'"1'to ‘0" 1—
0
l_
0 0
L
0 The Main Memaory accepts data transmissions
1— 0 from the outside world into the Hamming Code
0— circuit design. Inside the Main memoaory, itincludes:
l_
a— 90— - 5-Parity Bit Detector
1 - 4-t0-12 Line Decoder
o B - ECC Corrector
ECC Generator accepts 8-hitinputs 1— o . .
and produce a 13 bit output including o —_—0 These sub-circuit will checlf which each t:.ntls |f’ .
the parity bits that will help to protect 1 theEy'are' r!eeded to change its state from '0'to "1
the original bits. o or"1'to "0’ state.
ECC Generator | Main Memory
S in 0D DWmm
P4 0 P4 NTRITRNT Q4 —0—R4 G7 —0—
i B A7 13-bit Data Transmissions B7 087 C8 I8
o Cé 0 AB B6 —0—B6 G5 —0—@ There are two Hex Display used
0—{D7 0 o o Y :
_0—{D6 83 ’ ii gi o—gg gg I Ll to help the reader see which bits
::: Bi p3 p P3 azl—olRr3 G2 _1_@ are being checked and corrected.
3l-1— D3 C3 1 A3 B3 —14B3 G1—0—
1—D3 Cc2 1 A2 B2 —1-B2 GOf—1—{e
_0—|D7 C1 0 Al B1 —0-B1
-1—{D0 P2 s P2 Q2 —@#-|R2 This Hex Display shows only '0°"
co 1 AD B0 (—1+B0) .) ; i~
P1 1 P1 Q1 —14r1 if correct bits are being received or'C
PO 0 PO Q0 —0-R0 H1 —nt ifincorrect hits are being received
EI and it will be corrected.
t MNOTE. We are not concerned ahout
The 13-hit Data Transmission circuit accepts l hd parity hits being corrected but it will show
13 original hits of input including parity bits which H2 = 'C'value on the Hex Display if and only if
are the guardians ofthe original hits. This we need to correct the parity bits during
is the simulation of the real world situations where transmissions.
either the original or the parity bits are heing
switched and will be corrected ifthey are changed This Hex Display detects multiple errars.

during the transmission from one point to another.

Itwill display '0'if there is only one error
<0—@ detected also, it will display 'E'if multiple
— errors are detected but cannot he corrected.
_|__ hd When the original bits are transmitted without
— any errors but the parity hit has switched, it will
- display error 'E' on the 13th parity bit.

