Preview for Midterm Exam One Chapter 1

 Conversion between decimal, binary, and or hexadecimal numbers (including fractions)

 Arithmetic operations (addition, subtraction, and multiplication for binary and hexadecimal numbers)

Chapter 2

- Section 2-2 Boolean Algebra
- Section 2-3 Standard Forms (minterms, SOP)
- Section 2-4 Two-Level Optimization
- Section 2-5 Map Manipulation (PI, EPI, Don't-Care Conditions)
- Calculate literal cost (L), gate input cost (G and GN)

Chapter 3

- NAND Gate Mapping
- Rudimentary Logic Functions
- Decoder
- Encoder
- Multiplexier and DeMultiplexier
- Design a combinational circuit

Convert decimal number 369.3125 to binary

101110001.0101

Convert binary number 10111101.101 to decimal

Convert hexadecimal number F3C7.A to binary

1111001111000111.101

Convert binary number 10111101.101 to hexadecimal

Perform following binary multiplication

100111*011011

10000011101

Perform following hexadecimal multiplication

Chapter 2

- Section 2-2 Boolean Algebra
- Section 2-3 Standard Forms (minterms, SOP)
- Section 2-4 Two-Level Optimization
- Section 2-5 Map Manipulation (PI, EPI, Don't-Care Conditions)
- Calculate literal cost (L), gate input cost (G and GN)

 Prove the identity of each of the following Boolean equations, using algebraic manipulation

• Y + X'Z + XY' = X + Y + Z
= Y +
$$\overline{XZ} + X\overline{Y}$$

= Y + $\overline{XZ} + \overline{XZ}$
= (Y + X)(Y + \overline{Y}) + \overline{XZ}
= Y + X + \overline{XZ}
= Y + (X + \overline{X})(X + Z)
= X + Y + Z

 Reduce the following Boolean expressions to the indicated number of literals

X'Y' + XYZ + X'Y to three literals

$$\begin{split} \overline{X}\overline{Y} + XYZ + \overline{X}Y &= \overline{X} + XYZ = (\overline{X} + XY)(\overline{X} + Z) = (\overline{X} + X)(\overline{X} + Y)(\overline{X} + Z) \\ &= (\overline{X} + Y)(\overline{X} + Z) = \overline{X} + YZ \end{split}$$

Logic and Computer Design Fundamentals PowerPoint® Slides © 2004 Pearson Education, Inc.

Chapter 5 12

 Final all the prime implicants for following Boolean functions and determine which are essential.

•
$$F(A,B,C,D) = \sum_{m} (1, 3, 4, 5, 9, 10, 11, 12, 13, 14, 15)$$

 $Prime = AB, AC, AD, B\overline{C}, \overline{B}D, \overline{C}D$
 $Essential = AC, B\overline{C}, \overline{B}D$

- Optimize the following Boolean functions F together with the don't-care conditions d.
- $F(A,B,C,D) = \sum_{m} (0, 1, 7, 13, 15), d(A,B,C,D) = \sum_{m} (2, 6, 8, 9, 10)$

Chapter 3

- NAND Gate Mapping
- Rudimentary Logic Functions
- Decoder
- Encoder
- Multiplexier and DeMultiplexier
- Design a combinational circuit

Mapping to NAND gates

Assumptions:

- Gate loading and delay are ignored
- Cell library contains an inverter and *n*-input NAND gates, *n* = 2, 3, ...
- An AND, OR, inverter schematic for the circuit is available

The mapping is accomplished by:

- Replacing AND and OR symbols,
- Pushing inverters through circuit fan-out points, and
- Canceling inverter pairs

NAND Mapping Algorithm

1. Replace ANDs and ORs:

- 2. Repeat the following pair of actions until there is at most one inverter between :
 - a. A circuit input or driving NAND gate output, and
 - **b.** The attached NAND gate inputs.

NAND Mapping Example

Logic and Computer Design Fundamentals (C) PowerPoint® Slides © 2004 Pearson Education, Inc.

Chapter 5 18

• Q 3-11 (Page 185)

a)

PS	LS	RS	RR	PL	LL	RL
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	0	1	0	0	0	1
0	0	1	1	0	0	1
0	1	0	0	0	1	0
0	1	0	1	0	1	0
0	1	1	0	0	0	1
0	1	1	1	0	1	0
1	0	0	0	1	0	0
1	0	0	1	1	0	0
1	0	1	0	1	0	0
1	0	1	1	1	0	0
1	1	0	0	1	0	0
1	1	0	1	1	0	0
1	1	1	0	1	0	0
1	1	1	1	1	0	0

PL = PS

 $LL = \overline{PS} LS \overline{RS} + \overline{PS} LS RR$ $RL = \overline{PS} \overline{LS} RS + \overline{PS} RS \overline{RR}$

Design a 4-to-16-line decoder with enable using five 2-to-4-line decoders with enable.

Answer

Logic and Computer Design Fundamentals PowerPoint[®] Slides © 2004 Pearson Education, Inc.

Chapter 5 21

Design a circuit that has a 3-bit binary input and a single output (F) specified as follows:

- F = 0, when the input is less than $(5)_{10}$
- F = 1, otherwise <u>Step 1 (Specification)</u>: Label the inputs (3 bits) as X, Y, Z
 - X is the most significant bit, Z is the least significant bit

The output (1 bit) is F:

- $F = 1 \rightarrow (101)_2, (110)_2, (111)_2$
- $F = 0 \rightarrow$ other inputs

Sample Question13 (cont.)

<u>(F</u>	<u>Ste</u> orm	<u>p 2</u> iula	tion)	-
Obta	in Tr	ruth	table	+ =
Х	Y	Ζ	F	
0	0	0	0	=
0	0	1	0	
0	1	0	0	
0	1	1	0	Cir
1	0	0	0	•
1	0	1	1	
1	1	0	1	
1	1	1	1	
Boole	ean I	Expre	ession:	

F = XY'Z + XYZ' + XYZ

