
 1

CS370 Lab Assignment #2
(Due: 11:59 pm on 03/20/2020)

Goal:
The purpose of this project is to demonstrate the use of Boolean logic and build basic
circuits. Note that this lab assignment is group assignment with each group having no
more than 2 students.

Problem Statement:
The predominant storage inside a computer systems are on disks drives. SCSI disks are
the standard disks in most Unix Workstations from Sun, HP, SGI, and other vendors.
They are also the standard disks in Macintoshes and Higher-end Intel PC's, especially
network servers. Consider the Wide Ultra4 SCSI, which transfers data packets in 16-bit
bursts at 160 MHz with a maximum throughput of 320 MB/sec. The data transfers at
higher rates can result in random-noise pulse changes from a 0 to 1 and 1 to a 0. As the
speed of processors and electronic communications increases, these parity flips become
more prevalent and the inability to detect when these errors occur can be fatal. As a
Design Engineer you have been requested to create system for the transmission of these
8-bit packets from an I/O Controller to Memory using Error Correcting Code over 12-bit
data bus line. Wide SCSI contains a 68-bit bus; however, for the sake of simplification
we are only concerned with the data bits. The other bits in the SCSI bus are for bus
arbitration, synchronization, power management, etc. In this project, we will use even
parity.

Transmission Vectored Bit: A 4-Bit Parity Vector (P1-P4) are interlaced with the 8-bit
Data Vector (D1:D8) and an additional parity bit P5 is appended to the 12-bit hamming
code to ensure that the entire 13-bit vector is even parity:
P1 P2 D1 P3 D2 D3 D4 P4 D5 D6 D7 D8P5
1) Create an ECC Generator, at the I/O Controller from the 8-bit Data Vector. The output
of the ECC Generator will be the 13-Bit Vector.
2) Construct a 13-bit Data Transmission bus to send the 8-bit binary data and 5 parity bits
over to Memory.
3) Construct an ECC Detector at Main Memory that corrects for single bit errors.
Generally an interrupt/error handler is used to handle errors from the OS, for this exercise
we will use 3 Hex displays, 2 for data and 1 for an error status, for diagnostic purposes:
. In the event that no error has occurred, your design must display the data transferred
using the 2 Hex data displays and a “0” as an error status.
. For single bit transmission errors, your system must correct the error and display the
data along with “C” in the 3rd Hex Display.
. For 2-bit transmission errors, your design must display “E” in the error status display.

Hex Displays Memory I/O Controller

 2

Submission Instructions:

1. Write a Readme text file that includes (1) your group member names and the
contribution of each member (who did what); (2) list each file enclosed in your
submission package and briefly explain its function and usage.

2. Submit your LogicWorks files including your circuit schematic file (.cct) and
your library file (.clf).

3. In your .cct file, please document each section using the Text tool (Ctrl_E) so that
the grader knows how it works. Note that documentation is essential for full
credit.

4. Zip all your LogicWorks files and the Readme text file into one document and
name it using the first initial and the last name of one of your group members.
(e.g., assume that Nathan Adams is in your group, your zip file should be
NAdams.zip)

5. Email your zip file to

 Section One: MattRose370@gmail.com and txie@sdsu.edu

 Section Two: samiq370@gmail.com and txie@sdsu.edu

6. Make sure that you email your submission before 11:59 pm on 20 March 2020.
No late submission will be graded.

